Initializing Multisim Live ...

Waiting for awesome

Waiting for data
10 I0U1U2U3134U4U5U6U72U8U9U10U11U12U13658910111213141516171kΩR402115VV1V215VV+V+0V-V-10VV3U14U15U16U17U18U191kΩR1R21kΩR31kΩR51kΩR61kΩR71kΩR81kΩ192022232402505V3Hz0°V4027V+V+V+V+V+V+V+V+V+V+V+V+000000PR4LED1LED2LED3R91kΩR101kΩR111kΩU20R121kΩ1826V+V+028029073001kΩR13R141kΩR152kΩR162kΩR172kΩR182kΩ31320U21U2233R191kΩ34015VV535V615V360V715V370V815V380R201kΩ39R213kΩ40PR1LED4R221kΩ42430LED5R231kΩ4445R241kΩLED6U234146470U2448U2549 V V
Out of date
V —
V —
VPP —
VRMS —
VAV —
fV —
I —
I —
IPP —
IRMS —
IAV —
fI —
D —
Out of date
V —
V —
VPP —
VRMS —
VAV —
fV —
I —
I —
IPP —
IRMS —
IAV —
fI —
D —

ID:

ID:

x10
x0.1
Sheet:1
Analysis and annotation
Voltage
A
Current
Voltage and Current
Voltage Refe­rence
Expression
Data
Text Annotation
Digital
Schematic connectors
Ground
Conn­ector
Junction
Sources
AC Voltage
AC Current
Clock Voltage
Clock Current
Trian­gular Voltage
Trian­gular Current
DC Voltage (VCC)
DC Current
Step Voltage
Step Current
Pulse Voltage
Pulse Current
AM Voltage
FM Voltage
FM Current
Chirp Voltage
Chirp Current
Thermal Noise
Arbitrary Voltage Source
Arbitrary Current Source
Three Phase Delta
Three Phase Wye
More
More
Passive
Resistor
Capa­citor
Inductor
Potent­iometer
Fuse
Trans­formers...
Transformers...
1P1S
1P1S with Center Tap
1P2S
2P1S
2P2S
More
More
Coupled Inductors
Lossy Trans­mission Line
Lossless Trans­mission Line
Resistors...
Resistors...
Voltage Con­trol­led Resistor
Impe­dance Block
Analog
3 Terminal Opamp
5 Terminal Opamp
Ideal Com­par­a­tor
555 Timer
Opamps...
Opamps...
AD8541
ADA4000-1
ADA4077-1
ADTL082A
LF356
LM2904
LM324A
LM358
LMH6645
LMV321
MAX4412
MCP6001
OP27A
OP37E
OP482G
OP484E
THS4051
TL072
TL074
UA741
More
More
Com­par­a­tors...
Comparators...
AD8561A
LM311
LM339
MAX9031
MCP6546
More
More
Timers...
Timers...
LM555CN
ICM7555
TLC555
In­stru­men­ta­tion ampli­fiers...
Instrumentation amplifiers...
AD620A
AD623A
AD8222A
AD8226
INA126
INA333
More
More
Refe­rences...
References...
AD584J
LM336B-2.5
LM336B-5.0
TL431A
More
More
Current sense ampli­fiers...
Current sense amplifiers...
AD8210
MAX4081S
MAX9938T
Audio ampli­fiers...
Audio amplifiers...
LM4871
NCP2890
NCP4894
More
More
Opto­couplers...
Optocouplers...
HCPL-181
MOC8101
SFH6156-3
TCMT1600
VO615A-3
Vacuum tubes...
Vacuum tubes...
12AX7A
More
More
Diodes
Diode
Zener
LED
General purpose diodes...
General purpose diodes...
1N4148
1N4001
1N4005
1N5819
BAS16
BAS316
BAV70
MBRA­340T3
MMBD914
MMBD7000L
MSS2P3
MUR160
PMEG1­020EA
PMEG2­010BER
RB751S40
S1G
Zener diodes...
Zener diodes...
BZB84-B6V2
BZX84-C5V6
MM3Z6V8S
MMBZ5­240BL
NZH11C
SZ1SM­A5913B
More
More
Diode bridges...
Diode bridges...
3N247
DF1510S
G3SBA60
Prote­ction diodes...
Protection diodes...
1.5KE­100CA
1.5KE20A
1.5KE91A
1.5SM­C15CA
1.5SM­C6.8A
1SMB170A
More
More
Photo­diodes...
Photodiodes...
BPW 34 FA
S1227-16BQ
Varactor diodes...
Varactor diodes...
BB545
BB555
BB689-02V
BBY53-03W
MMBV­105GL
PIN diodes...
PIN diodes...
1SV233
BAR63-06W
MMBV­3401L
Thyristors...
Thyristors...
MAC08M
MAC12HCD
MCR08B
MCR716
MCR8SN
MKP3V240
More
More
Transistors
NPN
NPN 4T
PNP
PNP 4T
NMOS
NMOS 4T
PMOS
PMOS 4T
JFET N
JFET P
GaAsFET N
GaAsFET P
NPN...
NPN...
2N2222A
2N3904
BC817
BC847
BF422
MJ15024
MJD122
MMBTA14L
TIP31A
More
More
PNP...
PNP...
2N2907A
2N3906
BC807
BD244
MJL1302A
MMBT2­907AL
MMBTA63L
TIP32A
More
More
NMOS...
NMOS...
2N7000
2N7002
5LN01SP
BSC100­N06LS3 G
BSC123­N08NS3 G
BSS138BK
BSZ123­N08NS3 G
EPC2014
IRF510
IRF540
IRLM­L0060
PMPB20EN
More
More
PMOS...
PMOS...
BSP250
BSS84P
CPH3362
IPD04­2P03L3 G
NTR4101P
More
More
JFET...
JFET...
MMBF­4393L
MMBF­J175L
MMBF­J309L
More
More
IGBT...
IGBT...
AUIRG­DC0250
IRG4B­C30UD
IRG4­PH50U
IRG4P­SC71KD
NGTB15­N60S1EG
More
More
UJT...
UJT...
2N6027
More
More
Indicators
Lamp
LED
8 LED Bar
Buzzer
7-Segment Display
7-Segment HEX Display
7-Segment Display with Decimal
Switches
SPST
SPST Double Break
SPDT
Time Delay Switch
Voltage Con­trol­led SPST
Voltage Con­trol­led SPDT
Voltage Cont­rolled DPDT
Current Con­trol­led SPST
Analog switches...
Analog switches...
ADG779B
MAX4714
+-K+-
Modeling blocks
+-K+-
Voltage Gain Block
Voltage Summer
Multi­plier
Divider
Voltage Differe­ntiator
Voltage Integ­rator
Voltage Con­trol­led Voltage Source
Voltage Con­trol­led Current Source
Current Con­trol­led Voltage Source
Current Con­trol­led Current Source
ABM Voltage
ABM Current
Delay
Voltage Con­trol­led Resistor
Voltage Con­trol­led Capa­citor
Voltage Con­trol­led Inductor
Impe­dance Block
Inductor Coupling
+-θ46
Electromechanical
Normally Open Relay
Normally Closed Relay
Com­bi­na­tion Relay
+-θ46
Machines...
Machines...
+-θ46
DC Machine Perm­anent Magnet
DC Machine Wound Field
Brus­hless DC Machine
Brus­hless DC Machine (Hall)
Stepper 2 Phase
Stepper 2 Phase 2 Winding
Indu­ction Machine Squirrel Cage
Indu­ction Machine Squirrel Cage (E)
Indu­ction Machine Wound
Indu­ction Machine Wound (E)
Syn­chro­nous Perm­anent Magnet
Syn­chro­nous Perm­anent Magnet (E)
Syn­chro­nous Perm­anent Magnet (Hall)
Sensors...
Sensors...
In­cre­men­tal Encoder
Resolver
Me­cha­ni­cal loads...
Mechanical loads...
Inertial Load
Motion con­trol­lers...
Motion controllers...
Angle Wrap
rad/s to RPM
rad to deg
RPM to rad/s
VoutADJVin
Power
Diode Switch
GTO Switch
SCR Switch
Trans­istor Switch
Trans­istor with Diode Switch
TRIAC Switch
Phase Angle Con­trol­ler
Phase Angle Con­trol­ler (2 Pulse)
Phase Angle Con­trol­ler (6 Pulse)
PWM
PWM Com­ple­men­ta­ry
PWM 3 Phase
PWM Sinus­oidal 3 Phase
VoutADJVin
Linear regu­lators...
Linear regulators...
LM1084-3.3
LM1084-5.0
LM1084-ADJ
VoutADJVin
LM317
LM7805
MAX1­5007A
More
More
Swit­ching regu­lators...
Switching regulators...
MC34063A
More
More
MOSFET drivers...
MOSFET drivers...
IR2010
IR2110
MAX1­5024B
TC4427
More
More
Digital
Digital Constant
Digital Clock
AND
AND
2-Input AND
3-Input AND
4-Input AND
5-Input AND
6-Input AND
7-Input AND
8-Input AND
OR
OR
2-Input OR
3-Input OR
4-Input OR
5-Input OR
6-Input OR
7-Input OR
8-Input OR
NAND
NAND
2-Input NAND
3-Input NAND
4-Input NAND
5-Input NAND
6-Input NAND
7-Input NAND
8-Input NAND
NOR
NOR
2-Input NOR
3-Input NOR
4-Input NOR
5-Input NOR
6-Input NOR
7-Input NOR
8-Input NOR
XOR
XOR
2-Input XOR
3-Input XOR
4-Input XOR
5-Input XOR
6-Input XOR
7-Input XOR
8-Input XOR
XNOR
XNOR
2-Input XNOR
3-Input XNOR
4-Input XNOR
5-Input XNOR
6-Input XNOR
7-Input XNOR
8-Input XNOR
Buffer
Inverter
Flip-Flops & Latches
Flip-Flops & Latches
D Flip-Flop
JK Flip-Flop
SR Flip-Flop
T Flip-Flop
D Latch
SR Latch
BCD to 7-Segment Decoders
BCD to 7-Segment Decoders
74LS47N
74LS48N
Binary Counters
Binary Counters
74LS93N
74LS193N
Mux/Demux
Mux/Demux
74LS139D
Adders
Adders
74LS183D
Disable streaming
Details
Netlist
Errors
SPICE
SPICE Netlist

This is a text-based representation of the circuit.
The * symbol indicates a comment.
The + symbol indicates a continuation from the previous line.
Probes do not appear in netlists.

** Final Project.3615 **
*
* Multisim Live SPICE netlist
*
*

* --- Circuit Topology ---

* Component: I0
aI0 bridgeI0!OUT Digital_Source_I0

xbridgeI0!OUT bridgeI0!OUT 21 REAL_CUSTOM_DAC PARAMS: lowV=0 maxLowV=0.8 unknownV=1 minHighV=2 highV=3.3 riseT=0 fallT=0

* Component: LED1
xLED1 30 0 LED_VIRTUAL_LED1

* Component: LED2
xLED2 29 0 LED_VIRTUAL_LED2

* Component: LED3
xLED3 28 0 LED_VIRTUAL_LED3

* Component: LED4
xLED4 43 0 LED_VIRTUAL_LED4

* Component: LED5
xLED5 45 0 LED_VIRTUAL_LED5

* Component: LED6
xLED6 47 0 LED_VIRTUAL_LED6

* Component: R1
rR1 24 25 1000 VIRTUAL_RESISTANCE_R1

* Component: R10
rR10 4 29 1000 VIRTUAL_RESISTANCE_R10

* Component: R11
rR11 7 30 1000 VIRTUAL_RESISTANCE_R11

* Component: R12
rR12 26 18 1000 VIRTUAL_RESISTANCE_R12

* Component: R13
rR13 31 32 1000 VIRTUAL_RESISTANCE_R13

* Component: R14
rR14 32 33 1000 VIRTUAL_RESISTANCE_R14

* Component: R15
rR15 0 31 2000 VIRTUAL_RESISTANCE_R15

* Component: R16
rR16 44 31 2000 VIRTUAL_RESISTANCE_R16

* Component: R17
rR17 42 32 2000 VIRTUAL_RESISTANCE_R17

* Component: R18
rR18 46 33 2000 VIRTUAL_RESISTANCE_R18

* Component: R19
rR19 33 34 1000 VIRTUAL_RESISTANCE_R19

* Component: R2
rR2 23 24 1000 VIRTUAL_RESISTANCE_R2

* Component: R20
rR20 34 39 1000 VIRTUAL_RESISTANCE_R20

* Component: R21
rR21 39 40 3000 VIRTUAL_RESISTANCE_R21

* Component: R22
rR22 43 42 1000 VIRTUAL_RESISTANCE_R22

* Component: R23
rR23 45 44 1000 VIRTUAL_RESISTANCE_R23

* Component: R24
rR24 47 46 1000 VIRTUAL_RESISTANCE_R24

* Component: R3
rR3 22 23 1000 VIRTUAL_RESISTANCE_R3

* Component: R4
rR4 21 0 1000 VIRTUAL_RESISTANCE_R4

* Component: R5
rR5 20 22 1000 VIRTUAL_RESISTANCE_R5

* Component: R6
rR6 19 20 1000 VIRTUAL_RESISTANCE_R6

* Component: R7
rR7 18 19 1000 VIRTUAL_RESISTANCE_R7

* Component: R8
rR8 0 26 1000 VIRTUAL_RESISTANCE_R8

* Component: R9
rR9 1 28 1000 VIRTUAL_RESISTANCE_R9

* Component: U1
aU1 [bridgeU1!A 13 14 15] 49 Digital_NAND4_U1

xbridgeU1!A bridgeU1!A 1 REAL_CUSTOM_ADC PARAMS: lowV=0 maxLowV=0.8 unknownV=1 minHighV=2 highV=3.3 riseT=0 fallT=0

* Component: U10
aU10 [bridgeU10!A bridgeU10!B 8] 16 Digital_NAND3_U10

xbridgeU10!A bridgeU10!A 3 REAL_CUSTOM_ADC PARAMS: lowV=0 maxLowV=0.8 unknownV=1 minHighV=2 highV=3.3 riseT=0 fallT=0

xbridgeU10!B bridgeU10!B 4 REAL_CUSTOM_ADC PARAMS: lowV=0 maxLowV=0.8 unknownV=1 minHighV=2 highV=3.3 riseT=0 fallT=0

* Component: U11
aU11 [bridgeU11!A bridgeU11!B 9] 17 Digital_NAND3_U11

xbridgeU11!A bridgeU11!A 3 REAL_CUSTOM_ADC PARAMS: lowV=0 maxLowV=0.8 unknownV=1 minHighV=2 highV=3.3 riseT=0 fallT=0

xbridgeU11!B bridgeU11!B 4 REAL_CUSTOM_ADC PARAMS: lowV=0 maxLowV=0.8 unknownV=1 minHighV=2 highV=3.3 riseT=0 fallT=0

* Component: U12
aU12 bridgeU12!A 8 Digital_Inverter_U12

xbridgeU12!A bridgeU12!A 5 REAL_CUSTOM_ADC PARAMS: lowV=0 maxLowV=0.8 unknownV=1 minHighV=2 highV=3.3 riseT=0 fallT=0

* Component: U13
aU13 bridgeU13!A 9 Digital_Inverter_U13

xbridgeU13!A bridgeU13!A 6 REAL_CUSTOM_ADC PARAMS: lowV=0 maxLowV=0.8 unknownV=1 minHighV=2 highV=3.3 riseT=0 fallT=0

* Component: U14
xU14 27 24 V+ 0 7 5T_VIRTUAL_U14 PARAMS: VOS=0.001 IBS=8e-8 IOS=2e-8 AVOL=200000 BW=100000000 SR=1000000 CMRR=100 ISC=0.025 RI=10000000 RO=10

* Component: U15
xU15 27 23 V+ 0 6 5T_VIRTUAL_U15 PARAMS: VOS=0.001 IBS=8e-8 IOS=2e-8 AVOL=200000 BW=100000000 SR=1000000 CMRR=100 ISC=0.025 RI=10000000 RO=10

* Component: U16
xU16 27 22 V+ 0 5 5T_VIRTUAL_U16 PARAMS: VOS=0.001 IBS=8e-8 IOS=2e-8 AVOL=200000 BW=100000000 SR=1000000 CMRR=100 ISC=0.025 RI=10000000 RO=10

* Component: U17
xU17 27 20 V+ 0 4 5T_VIRTUAL_U17 PARAMS: VOS=0.001 IBS=8e-8 IOS=2e-8 AVOL=200000 BW=100000000 SR=1000000 CMRR=100 ISC=0.025 RI=10000000 RO=10

* Component: U18
xU18 27 19 V+ 0 3 5T_VIRTUAL_U18 PARAMS: VOS=0.001 IBS=8e-8 IOS=2e-8 AVOL=200000 BW=100000000 SR=1000000 CMRR=100 ISC=0.025 RI=10000000 RO=10

* Component: U19
xU19 27 18 V+ 0 2 5T_VIRTUAL_U19 PARAMS: VOS=0.001 IBS=8e-8 IOS=2e-8 AVOL=200000 BW=100000000 SR=1000000 CMRR=100 ISC=0.025 RI=10000000 RO=10

* Component: U2
aU2 [bridgeU2!A bridgeU2!B 16 17] 48 Digital_NAND4_U2

xbridgeU2!A bridgeU2!A 1 REAL_CUSTOM_ADC PARAMS: lowV=0 maxLowV=0.8 unknownV=1 minHighV=2 highV=3.3 riseT=0 fallT=0

xbridgeU2!B bridgeU2!B 2 REAL_CUSTOM_ADC PARAMS: lowV=0 maxLowV=0.8 unknownV=1 minHighV=2 highV=3.3 riseT=0 fallT=0

* Component: U20
xU20 27 26 V+ 0 1 5T_VIRTUAL_U20 PARAMS: VOS=0.001 IBS=8e-8 IOS=2e-8 AVOL=200000 BW=100000000 SR=1000000 CMRR=100 ISC=0.025 RI=10000000 RO=10

* Component: U21
xU21 0 33 35 37 34 5T_VIRTUAL_U21 PARAMS: VOS=0.001 IBS=8e-8 IOS=2e-8 AVOL=200000 BW=100000000 SR=1000000 CMRR=100 ISC=0.025 RI=10000000 RO=10

* Component: U22
xU22 0 39 36 38 40 5T_VIRTUAL_U22 PARAMS: VOS=0.001 IBS=8e-8 IOS=2e-8 AVOL=200000 BW=100000000 SR=1000000 CMRR=100 ISC=0.025 RI=10000000 RO=10

* Component: U23
aU23 41 bridgeU23!Y Digital_Inverter_U23

xbridgeU23!Y bridgeU23!Y 46 REAL_CUSTOM_DAC PARAMS: lowV=0 maxLowV=0.8 unknownV=1 minHighV=2 highV=3.3 riseT=0 fallT=0

* Component: U24
aU24 48 bridgeU24!Y Digital_Inverter_U24

xbridgeU24!Y bridgeU24!Y 42 REAL_CUSTOM_DAC PARAMS: lowV=0 maxLowV=0.8 unknownV=1 minHighV=2 highV=3.3 riseT=0 fallT=0

* Component: U25
aU25 49 bridgeU25!Y Digital_Inverter_U25

xbridgeU25!Y bridgeU25!Y 44 REAL_CUSTOM_DAC PARAMS: lowV=0 maxLowV=0.8 unknownV=1 minHighV=2 highV=3.3 riseT=0 fallT=0

* Component: U3
aU3 [bridgeU3!A bridgeU3!B bridgeU3!C bridgeU3!D] 41 Digital_NAND4_U3

xbridgeU3!A bridgeU3!A 1 REAL_CUSTOM_ADC PARAMS: lowV=0 maxLowV=0.8 unknownV=1 minHighV=2 highV=3.3 riseT=0 fallT=0

xbridgeU3!B bridgeU3!B 2 REAL_CUSTOM_ADC PARAMS: lowV=0 maxLowV=0.8 unknownV=1 minHighV=2 highV=3.3 riseT=0 fallT=0

xbridgeU3!C bridgeU3!C 3 REAL_CUSTOM_ADC PARAMS: lowV=0 maxLowV=0.8 unknownV=1 minHighV=2 highV=3.3 riseT=0 fallT=0

xbridgeU3!D bridgeU3!D 4 REAL_CUSTOM_ADC PARAMS: lowV=0 maxLowV=0.8 unknownV=1 minHighV=2 highV=3.3 riseT=0 fallT=0

* Component: U4
aU4 [bridgeU4!A 10] 13 Digital_NAND2_U4

xbridgeU4!A bridgeU4!A 2 REAL_CUSTOM_ADC PARAMS: lowV=0 maxLowV=0.8 unknownV=1 minHighV=2 highV=3.3 riseT=0 fallT=0

* Component: U5
aU5 [bridgeU5!A bridgeU5!B 11] 14 Digital_NAND3_U5

xbridgeU5!A bridgeU5!A 2 REAL_CUSTOM_ADC PARAMS: lowV=0 maxLowV=0.8 unknownV=1 minHighV=2 highV=3.3 riseT=0 fallT=0

xbridgeU5!B bridgeU5!B 4 REAL_CUSTOM_ADC PARAMS: lowV=0 maxLowV=0.8 unknownV=1 minHighV=2 highV=3.3 riseT=0 fallT=0

* Component: U6
aU6 [bridgeU6!A bridgeU6!B bridgeU6!C 12] 15 Digital_NAND4_U6

xbridgeU6!A bridgeU6!A 2 REAL_CUSTOM_ADC PARAMS: lowV=0 maxLowV=0.8 unknownV=1 minHighV=2 highV=3.3 riseT=0 fallT=0

xbridgeU6!B bridgeU6!B 4 REAL_CUSTOM_ADC PARAMS: lowV=0 maxLowV=0.8 unknownV=1 minHighV=2 highV=3.3 riseT=0 fallT=0

xbridgeU6!C bridgeU6!C 6 REAL_CUSTOM_ADC PARAMS: lowV=0 maxLowV=0.8 unknownV=1 minHighV=2 highV=3.3 riseT=0 fallT=0

* Component: U7
aU7 bridgeU7!A 10 Digital_Inverter_U7

xbridgeU7!A bridgeU7!A 3 REAL_CUSTOM_ADC PARAMS: lowV=0 maxLowV=0.8 unknownV=1 minHighV=2 highV=3.3 riseT=0 fallT=0

* Component: U8
aU8 bridgeU8!A 11 Digital_Inverter_U8

xbridgeU8!A bridgeU8!A 5 REAL_CUSTOM_ADC PARAMS: lowV=0 maxLowV=0.8 unknownV=1 minHighV=2 highV=3.3 riseT=0 fallT=0

* Component: U9
aU9 bridgeU9!A 12 Digital_Inverter_U9

xbridgeU9!A bridgeU9!A 7 REAL_CUSTOM_ADC PARAMS: lowV=0 maxLowV=0.8 unknownV=1 minHighV=2 highV=3.3 riseT=0 fallT=0

* Component: V1
vV1 V+ 0 dc 15 ac 0 0
+ distof1 0 0
+ distof2 0 0

* Component: V2
vV2 0 V- dc 15 ac 0 0
+ distof1 0 0
+ distof2 0 0

* Component: V3
vV3 25 0 dc 10 ac 0 0
+ distof1 0 0
+ distof2 0 0

* Component: V4
vV4 27 0 dc 5 ac 1 0
+ distof1 0 0
+ distof2 0 0
+ sin ( 5 5 3 0 0 0 )

* Component: V5
vV5 35 0 dc 15 ac 0 0
+ distof1 0 0
+ distof2 0 0

* Component: V6
vV6 36 0 dc 15 ac 0 0
+ distof1 0 0
+ distof2 0 0

* Component: V7
vV7 0 37 dc 15 ac 0 0
+ distof1 0 0
+ distof2 0 0

* Component: V8
vV8 0 38 dc 15 ac 0 0
+ distof1 0 0
+ distof2 0 0


* --- Circuit Models ---

* I0 model
.model Digital_Source_I0 d_constsource(State=1)

* R1 model
.model VIRTUAL_RESISTANCE_R1 r( )

* R10 model
.model VIRTUAL_RESISTANCE_R10 r( )

* R11 model
.model VIRTUAL_RESISTANCE_R11 r( )

* R12 model
.model VIRTUAL_RESISTANCE_R12 r( )

* R13 model
.model VIRTUAL_RESISTANCE_R13 r( )

* R14 model
.model VIRTUAL_RESISTANCE_R14 r( )

* R15 model
.model VIRTUAL_RESISTANCE_R15 r( )

* R16 model
.model VIRTUAL_RESISTANCE_R16 r( )

* R17 model
.model VIRTUAL_RESISTANCE_R17 r( )

* R18 model
.model VIRTUAL_RESISTANCE_R18 r( )

* R19 model
.model VIRTUAL_RESISTANCE_R19 r( )

* R2 model
.model VIRTUAL_RESISTANCE_R2 r( )

* R20 model
.model VIRTUAL_RESISTANCE_R20 r( )

* R21 model
.model VIRTUAL_RESISTANCE_R21 r( )

* R22 model
.model VIRTUAL_RESISTANCE_R22 r( )

* R23 model
.model VIRTUAL_RESISTANCE_R23 r( )

* R24 model
.model VIRTUAL_RESISTANCE_R24 r( )

* R3 model
.model VIRTUAL_RESISTANCE_R3 r( )

* R4 model
.model VIRTUAL_RESISTANCE_R4 r( )

* R5 model
.model VIRTUAL_RESISTANCE_R5 r( )

* R6 model
.model VIRTUAL_RESISTANCE_R6 r( )

* R7 model
.model VIRTUAL_RESISTANCE_R7 r( )

* R8 model
.model VIRTUAL_RESISTANCE_R8 r( )

* R9 model
.model VIRTUAL_RESISTANCE_R9 r( )

* U1 model
.model Digital_NAND4_U1 d_nand (rise_delay=1e-9 fall_delay=1e-9)

* U10 model
.model Digital_NAND3_U10 d_nand (rise_delay=1e-9 fall_delay=1e-9)

* U11 model
.model Digital_NAND3_U11 d_nand (rise_delay=1e-9 fall_delay=1e-9)

* U12 model
.model Digital_Inverter_U12 d_inverter (rise_delay=1e-9 fall_delay=1e-9)

* U13 model
.model Digital_Inverter_U13 d_inverter (rise_delay=1e-9 fall_delay=1e-9)

* U2 model
.model Digital_NAND4_U2 d_nand (rise_delay=1e-9 fall_delay=1e-9)

* U23 model
.model Digital_Inverter_U23 d_inverter (rise_delay=1e-9 fall_delay=1e-9)

* U24 model
.model Digital_Inverter_U24 d_inverter (rise_delay=1e-9 fall_delay=1e-9)

* U25 model
.model Digital_Inverter_U25 d_inverter (rise_delay=1e-9 fall_delay=1e-9)

* U3 model
.model Digital_NAND4_U3 d_nand (rise_delay=1e-9 fall_delay=1e-9)

* U4 model
.model Digital_NAND2_U4 d_nand (rise_delay=1e-9 fall_delay=1e-9)

* U5 model
.model Digital_NAND3_U5 d_nand (rise_delay=1e-9 fall_delay=1e-9)

* U6 model
.model Digital_NAND4_U6 d_nand (rise_delay=1e-9 fall_delay=1e-9)

* U7 model
.model Digital_Inverter_U7 d_inverter (rise_delay=1e-9 fall_delay=1e-9)

* U8 model
.model Digital_Inverter_U8 d_inverter (rise_delay=1e-9 fall_delay=1e-9)

* U9 model
.model Digital_Inverter_U9 d_inverter (rise_delay=1e-9 fall_delay=1e-9)


* --- Subcircuits ---

* LED1 subcircuit
.subckt LED_VIRTUAL_LED1 A K

dd1 A 0vNode ledDiodeModel
.model ledDiodeModel D( IS=1e-14 N=1 RS=0 IBV=1e-10 BV=1e+30 CJO=0 M=0.5 VJ=1 )

V_Isense 0vNode K DC 0

* Interactive sense node
b1 lit 0 v = { if (i(V_Isense) < 0, 0, if( i(V_Isense) > 0.005, 1, { i(V_Isense) / 0.005 })) }

.ends

* LED2 subcircuit
.subckt LED_VIRTUAL_LED2 A K

dd1 A 0vNode ledDiodeModel
.model ledDiodeModel D( IS=1e-14 N=1 RS=0 IBV=1e-10 BV=1e+30 CJO=0 M=0.5 VJ=1 )

V_Isense 0vNode K DC 0

* Interactive sense node
b1 lit 0 v = { if (i(V_Isense) < 0, 0, if( i(V_Isense) > 0.005, 1, { i(V_Isense) / 0.005 })) }

.ends

* LED3 subcircuit
.subckt LED_VIRTUAL_LED3 A K

dd1 A 0vNode ledDiodeModel
.model ledDiodeModel D( IS=1e-14 N=1 RS=0 IBV=1e-10 BV=1e+30 CJO=0 M=0.5 VJ=1 )

V_Isense 0vNode K DC 0

* Interactive sense node
b1 lit 0 v = { if (i(V_Isense) < 0, 0, if( i(V_Isense) > 0.005, 1, { i(V_Isense) / 0.005 })) }

.ends

* LED4 subcircuit
.subckt LED_VIRTUAL_LED4 A K

dd1 A 0vNode ledDiodeModel
.model ledDiodeModel D( IS=1e-14 N=1 RS=0 IBV=1e-10 BV=1e+30 CJO=0 M=0.5 VJ=1 )

V_Isense 0vNode K DC 0

* Interactive sense node
b1 lit 0 v = { if (i(V_Isense) < 0, 0, if( i(V_Isense) > 0.005, 1, { i(V_Isense) / 0.005 })) }

.ends

* LED5 subcircuit
.subckt LED_VIRTUAL_LED5 A K

dd1 A 0vNode ledDiodeModel
.model ledDiodeModel D( IS=1e-14 N=1 RS=0 IBV=1e-10 BV=1e+30 CJO=0 M=0.5 VJ=1 )

V_Isense 0vNode K DC 0

* Interactive sense node
b1 lit 0 v = { if (i(V_Isense) < 0, 0, if( i(V_Isense) > 0.005, 1, { i(V_Isense) / 0.005 })) }

.ends

* LED6 subcircuit
.subckt LED_VIRTUAL_LED6 A K

dd1 A 0vNode ledDiodeModel
.model ledDiodeModel D( IS=1e-14 N=1 RS=0 IBV=1e-10 BV=1e+30 CJO=0 M=0.5 VJ=1 )

V_Isense 0vNode K DC 0

* Interactive sense node
b1 lit 0 v = { if (i(V_Isense) < 0, 0, if( i(V_Isense) > 0.005, 1, { i(V_Isense) / 0.005 })) }

.ends

* U14 subcircuit
.subckt 5T_VIRTUAL_U14 In_p In_n Vpos Vneg Out params: AVOL=200k BW=20Meg CMRR=100
+SR=1Meg RO=75 ISC=25m RI=100meg VOS=0.1m IBS=1n IOS=1p
.param Rp1=1e6
.param Rs1=1e6
.param K_Is2a=sqrt(AVOL)/Rs1
.param K_Is2b=sqrt(AVOL)/Rp1
.param Cp1={AVOL/(2*pi*BW*Rp1)}
.param CMRR_lin=10**(CMRR/20)


Rin In_p In_n {RI}
Bcm 4 3 V = { V(cm)/CMRR_lin}
Voff In_p 4 {VOS}
Ibias1 In_p 0 {IBS}
Ibias2 In_n 0 {IBS}
Ioffset In_p In_n {IOS/2}

Rcm1 In_p cm 10meg
Rcm2 In_n cm 10meg

BIs1a vref vs2a I = { K_Is2a*(V(3)-V(In_n)) }
Rs1 vs2a vref {Rs1}

BIs2b vref vs2b I = { K_Is2b*(V(vs2a)-v(vref)) }
Rp1 vs2b vref {Rp1}
VCp1sense vs2b vs2b_ 0
Cp1 vs2b_ vref {Cp1}


D3 vs2b_ 8 Limit_Diode
D4 8 vpos Limit_Diode
B_SRp 8 vpos I={I(VCp1sense)- (Cp1*SR)}

D5 10 vs2b_ Limit_Diode
D6 Vneg 10 Limit_Diode
B_SRn Vneg 10 I={-1*I(VCp1sense)-(Cp1*SR)}

DVpclip vs2b_ Vpos V_limit
DVnclip Vneg vs2b_ V_limit

Bout vref out_ I={(V(vs2b)-v(vref))/RO}
Rout vref out_ {RO}
Voutsense out_ out 0

D9 out 15 Limit_Diode
D10 15 vpos Limit_Diode
B_outp 15 vpos I={I(Voutsense)- ISC}

D11 16 out Limit_Diode
D12 vneg 16 Limit_Diode
B_outn vneg 16 I={-1*I(Voutsense)-ISC}

R5 Vpos mid 1000000
R6 mid Vneg 1000000
Eref vref 0 mid 0 1

.MODEL Limit_Diode D (IS= 1.0e-12)
.MODEL V_limit D(n=0.1)
.ends

* U15 subcircuit
.subckt 5T_VIRTUAL_U15 In_p In_n Vpos Vneg Out params: AVOL=200k BW=20Meg CMRR=100
+SR=1Meg RO=75 ISC=25m RI=100meg VOS=0.1m IBS=1n IOS=1p
.param Rp1=1e6
.param Rs1=1e6
.param K_Is2a=sqrt(AVOL)/Rs1
.param K_Is2b=sqrt(AVOL)/Rp1
.param Cp1={AVOL/(2*pi*BW*Rp1)}
.param CMRR_lin=10**(CMRR/20)


Rin In_p In_n {RI}
Bcm 4 3 V = { V(cm)/CMRR_lin}
Voff In_p 4 {VOS}
Ibias1 In_p 0 {IBS}
Ibias2 In_n 0 {IBS}
Ioffset In_p In_n {IOS/2}

Rcm1 In_p cm 10meg
Rcm2 In_n cm 10meg

BIs1a vref vs2a I = { K_Is2a*(V(3)-V(In_n)) }
Rs1 vs2a vref {Rs1}

BIs2b vref vs2b I = { K_Is2b*(V(vs2a)-v(vref)) }
Rp1 vs2b vref {Rp1}
VCp1sense vs2b vs2b_ 0
Cp1 vs2b_ vref {Cp1}


D3 vs2b_ 8 Limit_Diode
D4 8 vpos Limit_Diode
B_SRp 8 vpos I={I(VCp1sense)- (Cp1*SR)}

D5 10 vs2b_ Limit_Diode
D6 Vneg 10 Limit_Diode
B_SRn Vneg 10 I={-1*I(VCp1sense)-(Cp1*SR)}

DVpclip vs2b_ Vpos V_limit
DVnclip Vneg vs2b_ V_limit

Bout vref out_ I={(V(vs2b)-v(vref))/RO}
Rout vref out_ {RO}
Voutsense out_ out 0

D9 out 15 Limit_Diode
D10 15 vpos Limit_Diode
B_outp 15 vpos I={I(Voutsense)- ISC}

D11 16 out Limit_Diode
D12 vneg 16 Limit_Diode
B_outn vneg 16 I={-1*I(Voutsense)-ISC}

R5 Vpos mid 1000000
R6 mid Vneg 1000000
Eref vref 0 mid 0 1

.MODEL Limit_Diode D (IS= 1.0e-12)
.MODEL V_limit D(n=0.1)
.ends

* U16 subcircuit
.subckt 5T_VIRTUAL_U16 In_p In_n Vpos Vneg Out params: AVOL=200k BW=20Meg CMRR=100
+SR=1Meg RO=75 ISC=25m RI=100meg VOS=0.1m IBS=1n IOS=1p
.param Rp1=1e6
.param Rs1=1e6
.param K_Is2a=sqrt(AVOL)/Rs1
.param K_Is2b=sqrt(AVOL)/Rp1
.param Cp1={AVOL/(2*pi*BW*Rp1)}
.param CMRR_lin=10**(CMRR/20)


Rin In_p In_n {RI}
Bcm 4 3 V = { V(cm)/CMRR_lin}
Voff In_p 4 {VOS}
Ibias1 In_p 0 {IBS}
Ibias2 In_n 0 {IBS}
Ioffset In_p In_n {IOS/2}

Rcm1 In_p cm 10meg
Rcm2 In_n cm 10meg

BIs1a vref vs2a I = { K_Is2a*(V(3)-V(In_n)) }
Rs1 vs2a vref {Rs1}

BIs2b vref vs2b I = { K_Is2b*(V(vs2a)-v(vref)) }
Rp1 vs2b vref {Rp1}
VCp1sense vs2b vs2b_ 0
Cp1 vs2b_ vref {Cp1}


D3 vs2b_ 8 Limit_Diode
D4 8 vpos Limit_Diode
B_SRp 8 vpos I={I(VCp1sense)- (Cp1*SR)}

D5 10 vs2b_ Limit_Diode
D6 Vneg 10 Limit_Diode
B_SRn Vneg 10 I={-1*I(VCp1sense)-(Cp1*SR)}

DVpclip vs2b_ Vpos V_limit
DVnclip Vneg vs2b_ V_limit

Bout vref out_ I={(V(vs2b)-v(vref))/RO}
Rout vref out_ {RO}
Voutsense out_ out 0

D9 out 15 Limit_Diode
D10 15 vpos Limit_Diode
B_outp 15 vpos I={I(Voutsense)- ISC}

D11 16 out Limit_Diode
D12 vneg 16 Limit_Diode
B_outn vneg 16 I={-1*I(Voutsense)-ISC}

R5 Vpos mid 1000000
R6 mid Vneg 1000000
Eref vref 0 mid 0 1

.MODEL Limit_Diode D (IS= 1.0e-12)
.MODEL V_limit D(n=0.1)
.ends

* U17 subcircuit
.subckt 5T_VIRTUAL_U17 In_p In_n Vpos Vneg Out params: AVOL=200k BW=20Meg CMRR=100
+SR=1Meg RO=75 ISC=25m RI=100meg VOS=0.1m IBS=1n IOS=1p
.param Rp1=1e6
.param Rs1=1e6
.param K_Is2a=sqrt(AVOL)/Rs1
.param K_Is2b=sqrt(AVOL)/Rp1
.param Cp1={AVOL/(2*pi*BW*Rp1)}
.param CMRR_lin=10**(CMRR/20)


Rin In_p In_n {RI}
Bcm 4 3 V = { V(cm)/CMRR_lin}
Voff In_p 4 {VOS}
Ibias1 In_p 0 {IBS}
Ibias2 In_n 0 {IBS}
Ioffset In_p In_n {IOS/2}

Rcm1 In_p cm 10meg
Rcm2 In_n cm 10meg

BIs1a vref vs2a I = { K_Is2a*(V(3)-V(In_n)) }
Rs1 vs2a vref {Rs1}

BIs2b vref vs2b I = { K_Is2b*(V(vs2a)-v(vref)) }
Rp1 vs2b vref {Rp1}
VCp1sense vs2b vs2b_ 0
Cp1 vs2b_ vref {Cp1}


D3 vs2b_ 8 Limit_Diode
D4 8 vpos Limit_Diode
B_SRp 8 vpos I={I(VCp1sense)- (Cp1*SR)}

D5 10 vs2b_ Limit_Diode
D6 Vneg 10 Limit_Diode
B_SRn Vneg 10 I={-1*I(VCp1sense)-(Cp1*SR)}

DVpclip vs2b_ Vpos V_limit
DVnclip Vneg vs2b_ V_limit

Bout vref out_ I={(V(vs2b)-v(vref))/RO}
Rout vref out_ {RO}
Voutsense out_ out 0

D9 out 15 Limit_Diode
D10 15 vpos Limit_Diode
B_outp 15 vpos I={I(Voutsense)- ISC}

D11 16 out Limit_Diode
D12 vneg 16 Limit_Diode
B_outn vneg 16 I={-1*I(Voutsense)-ISC}

R5 Vpos mid 1000000
R6 mid Vneg 1000000
Eref vref 0 mid 0 1

.MODEL Limit_Diode D (IS= 1.0e-12)
.MODEL V_limit D(n=0.1)
.ends

* U18 subcircuit
.subckt 5T_VIRTUAL_U18 In_p In_n Vpos Vneg Out params: AVOL=200k BW=20Meg CMRR=100
+SR=1Meg RO=75 ISC=25m RI=100meg VOS=0.1m IBS=1n IOS=1p
.param Rp1=1e6
.param Rs1=1e6
.param K_Is2a=sqrt(AVOL)/Rs1
.param K_Is2b=sqrt(AVOL)/Rp1
.param Cp1={AVOL/(2*pi*BW*Rp1)}
.param CMRR_lin=10**(CMRR/20)


Rin In_p In_n {RI}
Bcm 4 3 V = { V(cm)/CMRR_lin}
Voff In_p 4 {VOS}
Ibias1 In_p 0 {IBS}
Ibias2 In_n 0 {IBS}
Ioffset In_p In_n {IOS/2}

Rcm1 In_p cm 10meg
Rcm2 In_n cm 10meg

BIs1a vref vs2a I = { K_Is2a*(V(3)-V(In_n)) }
Rs1 vs2a vref {Rs1}

BIs2b vref vs2b I = { K_Is2b*(V(vs2a)-v(vref)) }
Rp1 vs2b vref {Rp1}
VCp1sense vs2b vs2b_ 0
Cp1 vs2b_ vref {Cp1}


D3 vs2b_ 8 Limit_Diode
D4 8 vpos Limit_Diode
B_SRp 8 vpos I={I(VCp1sense)- (Cp1*SR)}

D5 10 vs2b_ Limit_Diode
D6 Vneg 10 Limit_Diode
B_SRn Vneg 10 I={-1*I(VCp1sense)-(Cp1*SR)}

DVpclip vs2b_ Vpos V_limit
DVnclip Vneg vs2b_ V_limit

Bout vref out_ I={(V(vs2b)-v(vref))/RO}
Rout vref out_ {RO}
Voutsense out_ out 0

D9 out 15 Limit_Diode
D10 15 vpos Limit_Diode
B_outp 15 vpos I={I(Voutsense)- ISC}

D11 16 out Limit_Diode
D12 vneg 16 Limit_Diode
B_outn vneg 16 I={-1*I(Voutsense)-ISC}

R5 Vpos mid 1000000
R6 mid Vneg 1000000
Eref vref 0 mid 0 1

.MODEL Limit_Diode D (IS= 1.0e-12)
.MODEL V_limit D(n=0.1)
.ends

* U19 subcircuit
.subckt 5T_VIRTUAL_U19 In_p In_n Vpos Vneg Out params: AVOL=200k BW=20Meg CMRR=100
+SR=1Meg RO=75 ISC=25m RI=100meg VOS=0.1m IBS=1n IOS=1p
.param Rp1=1e6
.param Rs1=1e6
.param K_Is2a=sqrt(AVOL)/Rs1
.param K_Is2b=sqrt(AVOL)/Rp1
.param Cp1={AVOL/(2*pi*BW*Rp1)}
.param CMRR_lin=10**(CMRR/20)


Rin In_p In_n {RI}
Bcm 4 3 V = { V(cm)/CMRR_lin}
Voff In_p 4 {VOS}
Ibias1 In_p 0 {IBS}
Ibias2 In_n 0 {IBS}
Ioffset In_p In_n {IOS/2}

Rcm1 In_p cm 10meg
Rcm2 In_n cm 10meg

BIs1a vref vs2a I = { K_Is2a*(V(3)-V(In_n)) }
Rs1 vs2a vref {Rs1}

BIs2b vref vs2b I = { K_Is2b*(V(vs2a)-v(vref)) }
Rp1 vs2b vref {Rp1}
VCp1sense vs2b vs2b_ 0
Cp1 vs2b_ vref {Cp1}


D3 vs2b_ 8 Limit_Diode
D4 8 vpos Limit_Diode
B_SRp 8 vpos I={I(VCp1sense)- (Cp1*SR)}

D5 10 vs2b_ Limit_Diode
D6 Vneg 10 Limit_Diode
B_SRn Vneg 10 I={-1*I(VCp1sense)-(Cp1*SR)}

DVpclip vs2b_ Vpos V_limit
DVnclip Vneg vs2b_ V_limit

Bout vref out_ I={(V(vs2b)-v(vref))/RO}
Rout vref out_ {RO}
Voutsense out_ out 0

D9 out 15 Limit_Diode
D10 15 vpos Limit_Diode
B_outp 15 vpos I={I(Voutsense)- ISC}

D11 16 out Limit_Diode
D12 vneg 16 Limit_Diode
B_outn vneg 16 I={-1*I(Voutsense)-ISC}

R5 Vpos mid 1000000
R6 mid Vneg 1000000
Eref vref 0 mid 0 1

.MODEL Limit_Diode D (IS= 1.0e-12)
.MODEL V_limit D(n=0.1)
.ends

* U20 subcircuit
.subckt 5T_VIRTUAL_U20 In_p In_n Vpos Vneg Out params: AVOL=200k BW=20Meg CMRR=100
+SR=1Meg RO=75 ISC=25m RI=100meg VOS=0.1m IBS=1n IOS=1p
.param Rp1=1e6
.param Rs1=1e6
.param K_Is2a=sqrt(AVOL)/Rs1
.param K_Is2b=sqrt(AVOL)/Rp1
.param Cp1={AVOL/(2*pi*BW*Rp1)}
.param CMRR_lin=10**(CMRR/20)


Rin In_p In_n {RI}
Bcm 4 3 V = { V(cm)/CMRR_lin}
Voff In_p 4 {VOS}
Ibias1 In_p 0 {IBS}
Ibias2 In_n 0 {IBS}
Ioffset In_p In_n {IOS/2}

Rcm1 In_p cm 10meg
Rcm2 In_n cm 10meg

BIs1a vref vs2a I = { K_Is2a*(V(3)-V(In_n)) }
Rs1 vs2a vref {Rs1}

BIs2b vref vs2b I = { K_Is2b*(V(vs2a)-v(vref)) }
Rp1 vs2b vref {Rp1}
VCp1sense vs2b vs2b_ 0
Cp1 vs2b_ vref {Cp1}


D3 vs2b_ 8 Limit_Diode
D4 8 vpos Limit_Diode
B_SRp 8 vpos I={I(VCp1sense)- (Cp1*SR)}

D5 10 vs2b_ Limit_Diode
D6 Vneg 10 Limit_Diode
B_SRn Vneg 10 I={-1*I(VCp1sense)-(Cp1*SR)}

DVpclip vs2b_ Vpos V_limit
DVnclip Vneg vs2b_ V_limit

Bout vref out_ I={(V(vs2b)-v(vref))/RO}
Rout vref out_ {RO}
Voutsense out_ out 0

D9 out 15 Limit_Diode
D10 15 vpos Limit_Diode
B_outp 15 vpos I={I(Voutsense)- ISC}

D11 16 out Limit_Diode
D12 vneg 16 Limit_Diode
B_outn vneg 16 I={-1*I(Voutsense)-ISC}

R5 Vpos mid 1000000
R6 mid Vneg 1000000
Eref vref 0 mid 0 1

.MODEL Limit_Diode D (IS= 1.0e-12)
.MODEL V_limit D(n=0.1)
.ends

* U21 subcircuit
.subckt 5T_VIRTUAL_U21 In_p In_n Vpos Vneg Out params: AVOL=200k BW=20Meg CMRR=100
+SR=1Meg RO=75 ISC=25m RI=100meg VOS=0.1m IBS=1n IOS=1p
.param Rp1=1e6
.param Rs1=1e6
.param K_Is2a=sqrt(AVOL)/Rs1
.param K_Is2b=sqrt(AVOL)/Rp1
.param Cp1={AVOL/(2*pi*BW*Rp1)}
.param CMRR_lin=10**(CMRR/20)


Rin In_p In_n {RI}
Bcm 4 3 V = { V(cm)/CMRR_lin}
Voff In_p 4 {VOS}
Ibias1 In_p 0 {IBS}
Ibias2 In_n 0 {IBS}
Ioffset In_p In_n {IOS/2}

Rcm1 In_p cm 10meg
Rcm2 In_n cm 10meg

BIs1a vref vs2a I = { K_Is2a*(V(3)-V(In_n)) }
Rs1 vs2a vref {Rs1}

BIs2b vref vs2b I = { K_Is2b*(V(vs2a)-v(vref)) }
Rp1 vs2b vref {Rp1}
VCp1sense vs2b vs2b_ 0
Cp1 vs2b_ vref {Cp1}


D3 vs2b_ 8 Limit_Diode
D4 8 vpos Limit_Diode
B_SRp 8 vpos I={I(VCp1sense)- (Cp1*SR)}

D5 10 vs2b_ Limit_Diode
D6 Vneg 10 Limit_Diode
B_SRn Vneg 10 I={-1*I(VCp1sense)-(Cp1*SR)}

DVpclip vs2b_ Vpos V_limit
DVnclip Vneg vs2b_ V_limit

Bout vref out_ I={(V(vs2b)-v(vref))/RO}
Rout vref out_ {RO}
Voutsense out_ out 0

D9 out 15 Limit_Diode
D10 15 vpos Limit_Diode
B_outp 15 vpos I={I(Voutsense)- ISC}

D11 16 out Limit_Diode
D12 vneg 16 Limit_Diode
B_outn vneg 16 I={-1*I(Voutsense)-ISC}

R5 Vpos mid 1000000
R6 mid Vneg 1000000
Eref vref 0 mid 0 1

.MODEL Limit_Diode D (IS= 1.0e-12)
.MODEL V_limit D(n=0.1)
.ends

* U22 subcircuit
.subckt 5T_VIRTUAL_U22 In_p In_n Vpos Vneg Out params: AVOL=200k BW=20Meg CMRR=100
+SR=1Meg RO=75 ISC=25m RI=100meg VOS=0.1m IBS=1n IOS=1p
.param Rp1=1e6
.param Rs1=1e6
.param K_Is2a=sqrt(AVOL)/Rs1
.param K_Is2b=sqrt(AVOL)/Rp1
.param Cp1={AVOL/(2*pi*BW*Rp1)}
.param CMRR_lin=10**(CMRR/20)


Rin In_p In_n {RI}
Bcm 4 3 V = { V(cm)/CMRR_lin}
Voff In_p 4 {VOS}
Ibias1 In_p 0 {IBS}
Ibias2 In_n 0 {IBS}
Ioffset In_p In_n {IOS/2}

Rcm1 In_p cm 10meg
Rcm2 In_n cm 10meg

BIs1a vref vs2a I = { K_Is2a*(V(3)-V(In_n)) }
Rs1 vs2a vref {Rs1}

BIs2b vref vs2b I = { K_Is2b*(V(vs2a)-v(vref)) }
Rp1 vs2b vref {Rp1}
VCp1sense vs2b vs2b_ 0
Cp1 vs2b_ vref {Cp1}


D3 vs2b_ 8 Limit_Diode
D4 8 vpos Limit_Diode
B_SRp 8 vpos I={I(VCp1sense)- (Cp1*SR)}

D5 10 vs2b_ Limit_Diode
D6 Vneg 10 Limit_Diode
B_SRn Vneg 10 I={-1*I(VCp1sense)-(Cp1*SR)}

DVpclip vs2b_ Vpos V_limit
DVnclip Vneg vs2b_ V_limit

Bout vref out_ I={(V(vs2b)-v(vref))/RO}
Rout vref out_ {RO}
Voutsense out_ out 0

D9 out 15 Limit_Diode
D10 15 vpos Limit_Diode
B_outp 15 vpos I={I(Voutsense)- ISC}

D11 16 out Limit_Diode
D12 vneg 16 Limit_Diode
B_outn vneg 16 I={-1*I(Voutsense)-ISC}

R5 Vpos mid 1000000
R6 mid Vneg 1000000
Eref vref 0 mid 0 1

.MODEL Limit_Diode D (IS= 1.0e-12)
.MODEL V_limit D(n=0.1)
.ends


* --- Pin bridge models

.SUBCKT REAL_CUSTOM_DAC 1 2 PARAMS: lowV=0 maxLowV=0.8 unknownV=1.0 minHighV=2.0 highV=5.0 riseT=0 fallT=0
* Ideal Driver Model 1 = A/D out, 2 = input
aDACin1 [1] [2] aDAC
.MODEL aDAC dac_bridge (out_low = {lowV} out_high = {highV} out_undef = {unknownV} t_rise = {max(riseT,1e-9)} t_fall = {max(fallT,1e-9)})
.ENDS

.SUBCKT REAL_CUSTOM_ADC 1 2 PARAMS: lowV=0 maxLowV=0.8 unknownV=1.0 minHighV=2.0 highV=5.0 riseT=0 fallT=0
* Ideal Receiver Model 1 = input, 2 = A/D out
aADCin1 [2] [1] ADC
.MODEL ADC adc_bridge (in_low = {maxLowV} in_high = {minHighV})
.ENDS
Errors and Warnings

Any error, warning or information messages appear below.

Item
Document
No items selected.
Final Project.3615
Schematic

The simulation to run. See Simulation types for more information.

Name

Title of graph. Edit as desired.

End time

s

Time at which the simulation stops. Does not include pauses. Simulation does not occur in real time.

Start simulation

Mode

Threshold voltage levels.

Threshold voltage values used in the logic evaluation. See Digital Simulation for more information.

Output low

V

Output low voltage.

Maximum output voltage level to produce a low signal.

Input low threshold

V

Input low threshold voltage.

Maximum input voltage level for the signal to be considered low.

Input high threshold

V

Input high threshold voltage.

Minimum input voltage level for the signal to be considered high.

Output high

V

Output high voltage.

Minimum output voltage level to produce a high signal.

Width

Sheet width in grid squares.

Height

Sheet height in grid squares.

Grid

Toggles grid display.

Net Labels

Toggles all net labels.

Component Labels

Toggles all component labels.