Components: resistance pn junction diode(IN4007), ac voltage source, connecting probes, grounded terminal
Theory: A full wave rectifier circuit produces an output voltage or current which is purely DC or has
some specified DC component. Full wave rectifiers have some fundamental advantages over
their half wave rectifier counterparts. The average (DC) output voltage is higher than for half
wave, the output of the full wave rectifier has much less ripple than that of the half wave
rectifier producing a smoother output waveform. A circuit that produces the same output
waveform as the full wave rectifier circuit is that of the Full Wave Bridge Rectifier.
Positive Half-cycle:
During the negative half cycle of the supply, diodes D3 and D4 conduct in series, but diodes
D1 and D2 switch “OFF” as they are now reverse biased. The current flowing through the
load is the same direction as before.
Negative Half-cycle:
As the current flowing through the load is unidirectional, so the voltage developed across the
load is also unidirectional the same as for the previous two diode full-wave rectifier, therefore
the average DC voltage across the load is 0.637V Smax .
Parameters: Supply voltage max voltage(Vsmax), supply max current , dc output current , dc output voltage , ac or rms current , efficiency(n=Vdc/ Iac), ripple factor
Full wave bridge rectifier
Vsmax=15V f= 50 Hz, primary to secondary coil ratio 1:1 and Rl=1 kiloohm
Vpp= 15+15=30
Vs max=15 V
imax= Vsmax-2*0.7/2*(rf+rl)=15-1.4/20+2000=0.0067ohm
idc=2Imax/pie=0.00428amp
vdc=Idc*Rl=0.0042*1000=4.28V
Irms=Imax/root 2 =0.0047 amp
Vrms= irms*rl=0.0047*1000=4.7V
ripple factor = Irms/idc=1.0981
efficiency= rl/rf+rl=0.401
Result: The circuits of Full Wave Rectifiers are designed and implemented with the components
present in MULTISIM. The input and output waveforms are observed properly. It can be
observed that the frequency of input signals and output signals remain same for half wave
rectifier.
There are currently no comments